Computational Fluid Dynamics in Cardiovascular Disease
نویسندگان
چکیده
منابع مشابه
Computational Fluid Dynamics in Cardiovascular Disease
Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment ...
متن کاملComputational fluid dynamics modelling in cardiovascular medicine
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By...
متن کاملComputational fluid dynamics in congenital heart disease.
Computational fluid dynamics has been applied to the design, refinement, and assessment of surgical procedures and medical devices. This tool calculates flow patterns and pressure changes within a virtual model of the cardiovascular system. In the field of paediatric cardiac surgery, computational fluid dynamics is being used to elucidate the optimal approach to staged reconstruction of specifi...
متن کاملHydrodynamic Improvement of underwater glider by Computational Fluid Dynamics method
Gliders are new marine vehicles which have research and military uses and they move by sequent diving and climbing. Suitable design of its main body and wings are important for the most advance velocity. hydrodynamic design variables are main body form, wings (cross section, dimensions, shape, longitudinal and vertical position) and hydrostatic parameters (static trim angle, amount of added for...
متن کاملOptimization of cardiovascular stent design using computational fluid dynamics.
Coronary stent design affects the spatial distribution of wall shear stress (WSS), which can influence the progression of endothelialization, neointimal hyperplasia, and restenosis. Previous computational fluid dynamics (CFD) studies have only examined a small number of possible geometries to identify stent designs that reduce alterations in near-wall hemodynamics. Based on a previously describ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Circulation Journal
سال: 2011
ISSN: 1738-5520
DOI: 10.4070/kcj.2011.41.8.423